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> Abstract
Computer alignments have been said to be more objective and repeatable than manual alignments. Here we suggest that 
computer alignment methods, particularly those using a program called POY, suffer from a series of practical problems, and 
philosophical inconsistencies. Subjective decisions are still a part of POY analyses, but are less transparent. We point out 
the problems POY has with ancestral state reconstruction under conditions of nucleotide compositional bias, its problems 
when gaps are not uniformly distributed, and its problems when gaps are not independent of one-another. In ribosomal 
RNA (rRNA), the individual nucleotides are less important than the structure within which they are associated. This higher 
level of conservation dictates that structures should be aligned before nucleotides. We show with an empirical example that 
manual alignments can be more repeatable, more objective, and more accurate than POY analyses, and call into question the 
conclusions drawn from POY analyses of rRNA data.
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1.  Introduction

For molecular data, alignments represent hypotheses 
of homology (topographic homology hypotheses sen-
su KLASS 2001: 230). While often trivial, alignment 
can be problematic if there is a high level of length 
heterogeneity across sequences. There are many ways 
to approach the alignment problem, with preferences 
based on philosophical, practical and operational con-
siderations. For example, one might insist on strictly 
repeatable and algorithmic methods, while another 
may simply “eyeball” an alignment that “looks good.” 
The argument between algorithmic methods (computer 
alignments) and manual alignments is often presented 
as one of objectivity versus intuition, repeatability 
versus guesswork, science versus authoritarianism. 
However, this dichotomy is not so clear when one 
considers the decisions that need to be made, even for 
the most ardent supporters of computer alignments. 
For example, applying the same principles of repeat-
ability, we must question whether one should analyze 
morphological data in unison with molecules when it 

is highly unlikely that any two morphologists would 
come to identical morphological data matrices, even 
when considering the same set of taxa. The selection 
of which taxa to include is another decision that needs 
to be made, and will obviously infl uence phylogenetic 
results. Gene choice is still another decision. For ex-
ample, sampling regions of the nuclear small subunit 
ribosomal RNA (18S rRNA) favors grouping Ephe-
meroptera with Neoptera (KJER 2004), while sampling 
mitochondrial gene regions suggests a monophyletic 
Palaeoptera (KJER et al. 2006). Many morphologists 
favor Odonata + Neoptera. Moreover, within the 
rRNA-encoding genes are regions that are diffi cult to 
align by any means, even among closely related taxa 
(recently reviewed in GILLESPIE 2004). Should one in-
clude regions of the data that cannot be confi dently 
aligned across recent taxa (for example, 25 species of 
Leptonema [Trichoptera]), when considering the phy-
logeny of Hexapoda? If not, which nucleotides should 
be included, and which should be excluded? We all 
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agree that subjectivity should be minimized, but if 
decisions must be made, which ones should be con-
sidered justifi ed?
Numerical taxonomy revolutionized systematics in 
the 1960s and 70s, just as cladistics did a decade later. 
These revolutions were a direct assault on the autho-
ritarianism that characterized the old systematics, in 
which relationships were “proclaimed,” by “the ex-
pert,” sometimes without character support. The pro-
mise of cladistics, and then molecular phylogenetics, 
was that these systems would remove subjectivity, 
turning systematics into a “real science” (like physics). 
We have all benefi ted from the respect and increasing 
support that has come to our fi eld through the rigors of 
prescribed methodology. However, it may have been 
naive to argue that the process of decision making 
has been effectively eliminated with molecular data. 
We argue that if subjectivity canʼt be completely 
eliminated, then we should draw attention to our 
decisions and be as transparent as possible about them. 
We should be skeptical of our own results, as well as 
open to the opinions of others. We should accept that 
experience and expertise still have the potential to 
infl uence our results. It is understood that we never 
“know the truth” in phylogenetics; we can never know 
phylogenetic relationships with certainty. They are 
hypotheses only. Therefore if a phylogeny is to be 
of any use at all, it becomes a matter of infl uencing 
beliefs, and these beliefs are supported by the strength 
of the presented evidence.
Phylogenetic hypotheses must be rigorously evaluated 
rather than just philosophically approved. Hypotheses 
can be qualitatively supported by corroboration of 
multiple independent datasets, and quantitatively sup-
ported through indices such as bootstraps or posterior 
probabilities on (combined) datasets. We “believe” 
in the monophyly of Pterygota, largely on the basis 
of a single character; wings, which is deemed to be 
unlikely to have evolved multiple times in insects. 
(Of course, “having wings” produced many structural 
modifi cations. A well-compiled matrix could include 
many characters just from this system.) It may be that 
Pterygota is not monophyletic, but again, in order to 
convincingly show this (for most of us) the data would 
have to infl uence our beliefs rather than appeal to phil-
osophical arguments for epistemological consistency. 
Disagreements over alignment have been argued on 
largely philosophical grounds (KJER 1995; WHEELER 
1996; KJER 2004; OGDEN et al. 2005). Here we explore 
these arguments, and present our views.
The fi rst question to explore is whether the alignment 
argument is important enough to invest the time to un-
derstand it, and whether morphologists should enter 
the debate. We argue that it is, because all phyloge-
netic methods assume homology. Ribosomal RNA is 
typically diffi cult to align, and rRNA is now, and will 

likely continue to be one of our most important phy-
logenetic markers due to organismal universality, ease 
in PCR amplifi cation, and the mass of data that has al-
ready accumulated. Alignments, whether static or dy-
namic, are the data from which phylogenies are drawn, 
and hypotheses may collapse based on the placement 
of a single nucleotide. Alignment is critical for phylo-
genetic inference as a statement of homology. Finally, 
structurally aligned data (KJER 2004) produce different 
trees than data that are analyzed with POY (WHEELER et 
al. 2001). This also applies to morphological character 
systems, as exemplifi ed by the comparison of different 
hypotheses on cockroach phylogeny in KLASS (2001).
We consider two broad divisions in alignment ap-
proaches: computer alignments, in which parameters 
are input into a computer (with the resultant alignment 
unadjusted) and manual alignments, in which columns 
of nucleotides are aligned together by eye (reviewed 
in KJER et al. in press). Computer alignment methods 
include programs like Clustal (THOMPSON et al. 1994) 
and Malign (WHEELER & GLADSTEIN 1994), as well as 
POY (GLADSTEIN & WHEELER 1997). Unlike the other 
methods, POY is not strictly an alignment program, 
but rather an analysis program that simultaneously 
produces a dynamic alignment and a phylogeny. Man-
ual alignments include those that are usually initially 
aligned with the assistance of a computer, and then 
manually adjusted. This includes POY analyses that 
manually eliminate portions of the data as “unalign-
able”, or manually subdivide the data that is entered 
into the computer program in blocks (e.g., GILLESPIE 
et al. 2005a). Another form of manual alignment is 
based on using the secondary structure of the mol-
ecule to dictate decisions about homology, and these 
alignments are referred to as structural alignments 
(e.g., KJER 1995; GILLESPIE 2004). There are promising 
computer methods that use structural information to 
guide alignments as well (e.g., NOTREDAME et al. 1997; 
GORODKIN et al. 2001; MISOF et al. 2003; HOFACKER et 
al. 2004; HOLMES 2004; NIEHUIS et al. 2006). These 
subdivisions of “manual vs. computer” will change as 
our algorithms develop. Eventually, a fully automated 
structural alignment may be implemented, and when 
this happens, the most important contrast among me-
thods will be whether primary sequences, or second-
ary structures dictate alignment decisions of rRNA.
The debate over alignment methods is framed by 
some as one of objective algorithm-based “science” 
against intuition-driven authoritarianism. Computer 
alignments are thought to be both more objective, and 
more repeatable, while manual alignments are thought 
to be more “accurate” as evidenced by the number of 
computer alignments that are subsequently manually 
adjusted (KJER et al. in press). Until recently, these as-
sumptions have never been tested, and we wonder if 
they are true.
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2.  Background

Even sequences that are the same length may require 
decisions about alignment, but when two sequences 
differ in length, minimally, we must insert gaps into 
the shorter of the two sequences and make decisions 
about homology. Length differences are characteristic 
of rRNA sequences, yet are relatively rare in protein-
coding genes because of their codon organization, 
wherein insertions or deletions in groups of 1 or 2 
would result in a frame shift. Workers who study the 
evolution of genes across, e.g., Metazoa may fi nd dif-
fi cult-to-align protein-coding genes, just as population 
geneticists may fi nd diffi cult-to-align intron or non-
coding regions; however, these genes (or their corre-
sponding divergence rates) are not as commonly used 
by systematists. For systematists, alignment problems 
are almost synonymous with rRNA, especially the less 
conserved regions of the molecule typically referred to 
as “expansion segments” or “variable regions.” 
For computer alignments, a variety of parameters must 
be set by the investigator. For example, the user must 
input how costly it is to insert a gap into one sequence 
if the nucleotides do not match another sequence to 
which it is being aligned. “Where the gaps belong” is 
dependent on a ratio between the gap cost and the sub-
stitution cost. Under Needleman-Wunsch algorithms 
(NEEDLEMAN & WUNSCH 1970), there are points given 
for lining up identical nucleotides, and points subtract-
ed for inserting gaps or assuming substitutions. If the 
gap cost is trivially low, the computer will freely insert 
gaps until it matches nucleotides of an identical state. 
If the gap cost is prohibitively high, the computer will 
resist inserting gaps, even when, to the human eye, it 
is obvious that the data are offset (misaligned). There 
must be some optimal gap cost between these two ex-
tremes. Objectively fi nding this gap cost (and/or other 
input parameters) is what sensitivity analysis (FARRIS 
1969; WHEELER 1995; WHITING et al. 1997) was meant 
to do. The idea behind sensitivity analysis is to ana-
lyze the data under a variety of input parameters (such 
as the gap cost, described above), and select among 
them by some criterion. One such criterion is to mini-
mize character incongruence by subjecting partitioned 
data to an ILD test (FARRIS et al. 1994; c.f. PHT test 
of SWOFFORD 1995). Briefl y, an ILD test measures the 
sum of tree lengths of partitioned datasets, and then 
compares this value with the tree length of the com-
bined dataset. Presumably, given the assumption that 
there is one phylogeny, the “best” set of parameters 
will be revealed when the partitioned datasets are least 
incongruent with the combined analysis. The funda-
mental fl aw with this idea, however, is that, in the real 
world, the permissiveness for insertions and/or dele-
tions (indels) among sites in rRNA is not randomly 
distributed, but rather, clustered. Some regions are ex-

tremely invariant in length, such that no insertions or 
deletions have ever been observed, even in compari-
sons across kingdoms. These regions should require 
a nearly infi nite gap cost. Adjacent to these conserved 
sequences are regions in which indels are exceedingly 
common, even in comparisons among closely related 
species. These regions would best be aligned with a 
low gap cost. Between these extremes are regions best 
recovered with every gap cost between near-zero and 
infi nity. There are no ideal average fi xed gap costs 
for rRNA (KJER 1995) because ideally, every position 
has its own currently undefi ned gap cost (KJER 2004), 
and this gap cost is not necessarily an integer or half 
integer. During evolution, for example, a deletion oc-
curred in a certain position, or it did not. Any fi xed 
probability assigned to this process a posteriori (by the 
analysing phylogeneticist) and accordingly any fi xed 
gap cost assigned to some sequence are gross oversim-
plifi actions of reality. It is illogical to seek an optimum 
from a variety of unjustifi able analyses. If gap costs 
in rRNA are not fi xed among sites, then selecting an 
optimum from a large number of meaningless analy-
ses is equally meaningless. Sensitivity analysis is in-
consistent with a philosophy of avoiding subjectivity, 
because it leads to subjective decisions about gap costs 
that are less transparent than “eyeballing” the data. If 
one wished to be philosophically consistent, then gap 
costs and transversion weights should be set to one 
(GRANT & KLUGE 2003).

3.  POY vs. Structure

The current debate is largely between direct optimi-
zation (as implemented in POY) and structural align-
ments, although the fi eld of direct optimization is 
expanding (REDELINGS & SUCHARD 2005). Direct opti-
mization is a broad fi eld of analysis, of which POY is 
currently the most commonly used program. The use 
of unadjusted Clustal alignments for rRNA is rare, and 
adjusting a Clustal alignment turns the alignment to a 
manual one. Malign is similarly rarely used, and no 
longer supported by its authors. In a survey of phy-
logenetic papers in Systematic Biology, Molecular 
Biology and Evolution, and Cladistics from the last 
three years, KJER et al. (in press) found that 76% of 
the papers that utilized rRNA were manually aligned. 
POY is an implementation of direct optimization, or 
DO (SANKOFF et al. 1973; SANKOFF 1975; SANKOFF & 
CEDERGREN 1983; KRUSKAL 1983), which is explained 
in detail in WHEELER (1996). Direct optimization is a 
good idea because homology is tree dependent. There 
are cases when insertions and deletions have occurred 
with such frequency that the only way their history 
could possibly be recovered is through a direct optimi-
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zation approach with dense taxon sampling, accurately 
recovering ancestral states throughout the backbone of 
a tree. Structural alignments are limited to conserved 
portions of the molecules, which sometimes leaves the 
most length variable regions unaligned and discard-
ed, or worse, arbitrarily aligned and left in. So why 
should anyone favor structural alignments? Because 
in rRNA, structure is conserved to a greater degree 
than are nucleotides (e.g., GUTELL et al. 1994). This 
can be seen by superimposing folded rRNA molecules 
from exceedingly distant taxa. They all fold into the 
same basic conserved structure, but when you look at 
the nucleotides that make up these hydrogen-bonded 
stems, they may share little or no similarity in their 
nucleotides. For the most part, ribosomal RNAs func-
tion on the basis of their structure, not their nucleotides 
(see recent review in NOLLER 2005). POY does offer 
an option to incorporate structural constraints, and this 
option is disucussed in KJER et al. (in press) and GIL-
LESPIE et al. (2005a). Yet, as it is most commonly used, 
nucleotides (i.e., transformations) are the only thing 
that POY “sees,” using fi xed gap costs and other pa-
rameters that are currently undefi ned, and should vary 
across sites. The allegation that manual alignments are 
subjective and unrepeatable applies equally to a sys-
tem in which trees are determined through a variety of 
arbitrary parameter searches.
Nucleotide compositional bias (a state in which the 
four nucleotides deviate substantially from 25% each) 
presents a severe challenge to computer alignments. 
Compositional bias reduces character complexity, al-
ready low in molecular data. If independent lineages 
develop similar compositional biases, then aligning a 
series of non-homologous “A”s together has the same 
effect as grouping taxa according to overall nucleotide 
composition. While the analysis may be strictly char-
acter-based, the results are phenetic. Another challenge 
presented by compositional bias that has been shown 
with empirical data, simulation studies (COLLINS et al. 
1994), and mathematical proof (EYRE-WALKER 1998), 
is that parsimony severely under-represents the rare 
states in ancestral reconstructions under conditions 
of compositional bias and/or accelerated substitution 
rates. In other words, if you measure the percentages 
of each of the nucleotides in 10 taxa on a tree, you 
might fi nd that G ranges from 3 to 8 percent across 
taxa. Then when you look at reconstructed sequences 
for these same 10 taxa, you would fi nd that G is virtu-
ally absent. What happened to all the Gs? The situa-
tion is well illustrated in the tree fi gures presented by 
COLLINS et al. (1994), which show the reconstructed 
nucleotide compositions at all the internodes are dras-
tically different from those present in terminal taxa. 
Counting reconstructed transformations is what POY 
does, and COLLINS et al. (1994), and EYRE-WALKER 
(1998) show that this doesnʼt work when nucleotide 

composition is biased and/or when rates are elevated. 
Variable regions in rRNA are defi ned by elevated sub-
stitution rates, and are commonly biased in nucleotide 
composition (e.g., GILLESPIE et al. 2005b).
Indels in rRNA are also commonly clustered together 
within variable regions. POY treats indels as inde-
pendent events. So, if there were a region in which 
Taxon A had lost fi ve nucleotides, and Taxon B had 
lost 9, POY would consider a minimum of fi ve inde-
pendent transformations linking Taxon A and Taxon B 
together. However, it is more parsimonious to assume 
a single loss of fi ve nucleotides in the ancestor of A 
and B, followed by an additional loss of four nucleo-
tides in Taxon B (two transformations). Worse yet, it is 
equally parsimonious to assume that Taxon A had lost 
fi ve nucleotides as a single event, and Taxon B had lost 
nine independently (two transformations). Even with 
the “extendcost” option, (which allows for a reduced 
gap cost for the insertion of additional gaps, following 
an initial gap) any non-zero extendcost will infl ate the 
cost of multiple simultaneous deletions.
To summarize, we would predict POY to fail under 
conditions of nucleotide compositional bias, and/or 
when gaps are not uniformly distributed, and/or when 
gaps are not independent of one-another, and/or in a 
molecule where the nucleotide composition is less im-
portant than the structure with which they are associ-
ated. Any one of these conditions would require that 
we look to the results of a POY analysis with extreme 
skepticism. All of these conditions are characteristic 
of rRNA.
These are strong opinions, but they remain untested. 
How would one compare the repeatability of one 
method with that of another? The old approach has 
been one of philosophical proclamation. A better ap-
proach would be to send a large number of datasets, 
with the taxon labels masked, to a variety of investiga-
tors. These investigators could be instructed to align 
that data with secondary structure and compare the 
results to a similarly blind POY analysis. If gap costs 
and other parameter selections are indeed arbitrary, we 
would predict that different investigators would arrive 
at different parameters and therefore different trees 
with the POY analyses. We would also predict that if 
there is an underlying conserved secondary structure 
to rRNA, then different investigators could fi nd it, and 
their phylogenetic results would be more similar to one 
another because they are using a homology criterion 
that is not arbitrary. We did such an experiment (KJER 
et al. in press), although on a small scale. The three 
of us analyzed the entire mitochondrial large subunit 
rDNA gene (16S rRNA) for 18 mammals. This dataset 
had the added bonus of having a highly corroborated 
expected phylogeny: (Monotremes (Marsupials ((Pe-
rissodactyls Artiodactyls) (Baboon (Gibbon (Orang-
utans (Gorilla (Human Chimps)))))))). As predicted, 
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with the structural alignment, all three of us arrived at 
the same phylogeny with the exception of the Gorilla/
Human/Chimp node. The node grouping Chimps and 
Humans (excluding Gorillas) was found to have a near 
zero branch length, was supported by a 39% bootstrap 
by two of us, and left as a polytomy by the other. Oth-
erwise, the trees we recovered were the expected trees. 
Also, as predicted, we all selected different parameters 
for the POY analysis, and arrived upon different trees. 
None of us converged on the expected tree with POY. 
We were surprised to fi nd that even when comparing 
the results of analyses with the same input parameters 
on the same dataset, none of us recovered the same 
tree. There are a number of reasons this could have 
occurred, but the most likely is that we did not perform 
enough replicates to converge on the best tree, just as 
an insuffi cient number of replicates in any heuristic 
tree search may fail to fi nd the shortest trees. However, 
we performed between 10 and 100 replicates, which 
is a standard number, and the search that ran for 100 
replicates recovered the longest trees. In this example, 
we suggest that POY is not an objective means of data 
analysis unless you have some objective means of se-
lecting the input parameters, and it is not repeatable 
unless you are given those parameters in advance. 
Even with the input parameters set in advance, we 
recovered different trees from each investigator. Man-
ual alignment may be subjective and unrepeatable, as 
W.C. Wheeler defi nes these terms, but POY is even 
more so. As a side note, morphological data are inher-
ently unrepeatable by this strict defi nition. Decisions 
still need to be made. Expertise is still required. Under 
this set of conditions, the more objective approach is 
that which allows the reader to more readily evaluate 
the evidence. We suggest you compare the 18S rDNA 
alignment presented for insects on Kjerʼs website, 
from which the results of KJER (2004) were taken, with 
the results of WHEELER et al. (2001). Which of the trees 
from WHEELER et al. (2001) shall we favor? The 1:1:1 
tree? The strict consensus? The discussion tree? These 
are decisions best made in light of the data, which is 
best aligned, visualized and evaluated by its structure. 
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